Boundary
The Fédération Aéronautique Internationale has established the Kármán line at an altitude of 100 kilometres (62 mi) as a working definition for the boundary between aeronautics and astronautics. This is used because above an altitude of roughly 100 km, as Theodore von Kármán calculated, a vehicle would have to travel faster than orbital velocity in order to derive sufficient aerodynamic lift from the atmosphere to support itself.
The United States designates people who travel above an altitude of 50 miles (80 km) as astronauts.
NASA's mission control uses 76 miles (122 km) as their re-entry altitude, which roughly marks the boundary where atmospheric drag becomes noticeable, (depending on the ballistic coefficient of the vehicle), thus leading shuttles to switch from steering with thrusters to maneuvering with air surfaces.
In 2009, scientists at the University of Calgary reported detailed measurements with an instrument called the Supra-Thermal Ion Imager (an instrument that measures the direction and speed of ions), which allowed them to determine that space begins 118 kilometres (73 mi) above Earth. The boundary represents the midpoint of a gradual transition over tens of kilometers from the relatively gentle winds of the Earth's atmosphere to the more violent flows of charged particles in space, which can reach speeds well over 600 miles per hour (1,000 km/h).
This was only the second time that direct measurements of charged particle flows have been conducted at this region, which is too high for balloons and too low for satellites. It was however the first study to include all the relevant elements for this kind of determination – for example, the upper atmospheric winds.
The instrument was carried by the JOULE-II rocket on January 19, 2007, and traveled to an altitude of about 124 miles (200 km). From there it collected data while it was moving through the "edge of space".
Space versus Orbit
To perform an orbit, a spacecraft must travel faster than a sub-orbital spaceflight. A spacecraft has not entered orbit until it is traveling with a sufficiently great horizontal velocity such that the acceleration due to gravity on the spacecraft is less than or equal to the centripetal acceleration being caused by its horizontal velocity (see circular motion). So to enter orbit, a spacecraft must not only reach space, but must also achieve a sufficient orbital speed (angular velocity). For a low-Earth orbit, this is about 7,900 m/s (28,440.00 km/h; 17,671.80 mph); by contrast, the fastest airplane speed ever achieved (excluding speeds achieved by deorbiting spacecraft) was 2,200 m/s (7,920.00 km/h; 4,921.26 mph) in 1967 by the North American X-15. Konstantin Tsiolkovsky was the first person to realize that, given the energy available from any available chemical fuel, a several-stage rocket would be required. The escape velocity to pull free of Earth's gravitational field altogether and move into interplanetary space is about 11,000 m/s (39,600.00 km/h; 24,606.30 mph) The energy required to reach velocity for low Earth orbit (32 MJ/kg) is about twenty times the energy required simply to climb to the corresponding altitude (10 kJ/(km·kg)).
There is a major difference between sub-orbital and orbital spaceflights. The minimum altitude for a stable orbit around Earth (that is, one without significant atmospheric drag) begins at around 350 kilometres (220 mi) above mean sea level. A common misunderstanding about the boundary to space is that orbit occurs simply by reaching this altitude. Achieving orbital speed can theoretically occur at any altitude, although atmospheric drag precludes an orbit that is too low. At sufficient speed, an airplane would need a way to keep it from flying off into space, but at present, this speed is several times greater than anything within reasonable technology.
A common misconception is that people in orbit are outside Earth's gravity because they are "floating". They are floating because they are in "free fall": they are accelerating toward Earth, along with their spacecraft, but are simultaneously moving sideways fast enough that the "fall" away from a straight-line path merely keeps them in orbit at a constant distance above Earth's surface. Earth's gravity reaches out far past the Van Allen belt and keeps the Moon in orbit at an average distance of 384,403 kilometres (238,857 mi).
Regions
Space being not a perfect vacuum, its different regions are defined by the various atmospheres and "winds" that dominate within them, and extend to the point at which those winds give way to those beyond. Geospace extends from Earth's atmosphere to the outer reaches of Earth's magnetic field, whereupon it gives way to the solar wind of interplanetary space. Interplanetary space extends to the heliopause, whereupon the solar wind gives way to the winds of the interstellar medium. Interstellar space then continues to the edges of the galaxy, where it fades into the intergalactic void.
Go to part 3 please enter
Go to part 3 please enter
No comments:
Post a Comment