Home __________________ Menu_____________________________________

Saturday, September 26, 2009

Outer Space - 1

Outer space (often simply called space) comprises the relatively empty regions of the universe outside the atmospheres of celestial bodies. Outer space is used to distinguish it from airspace and terrestrial locations.

Contrary to popular understanding, outer space is not completely empty (i.e. a perfect vacuum), but contains a low density of particles, predominantly hydrogen plasma, as well as electromagnetic radiation and neutrinos. Hypothetically, it also contains dark matter and dark energy.

The term outer space was first recorded by the English poet Lady Emmeline Stuart-Wortley in her poem "The Maiden of Moscow" in 1842, and also later attested to the writings of HG Wells in 1901. The shorter term space is actually older, first used to mean the region beyond Earth's sky in John Milton's Paradise Lost in 1667.

Environment
Outer space is the closest approximation of a perfect vacuum. It has effectively no friction, allowing stars, planets and moons to move freely along ideal gravitational trajectories. But no vacuum is truly perfect, not even in intergalactic space where there are still a few hydrogen atoms per cubic centimeter. (For comparison, the air we breathe contains about 1019 molecules per cubic centimeter.) The deep vacuum of space could make it an attractive environment for certain industrial processes, for instance those that require ultraclean surfaces.

Stars, planets, asteroids, and moons keep their atmospheres by gravitational attraction, and as such, atmospheres have no clearly delineated boundary: the density of atmospheric gas simply decreases with distance from the object. The Earth's atmospheric pressure drops to about 1 Pa at 100 kilometres (62 mi) of altitude, the Kármán line which is a common definition of the boundary with outer space. Beyond this line, isotropic gas pressure rapidly becomes insignificant when compared to radiation pressure from the sun and the dynamic pressure of the solar wind, so the definition of pressure becomes difficult to interpret. The thermosphere in this range has large gradients of pressure, temperature and composition, and varies greatly due to space weather. Astrophysicists prefer to use number density to describe these environments, in units of particles per cubic centimetre.

Temperature
All of the observable universe is filled with large numbers of photons, created during the Big Bang, the so-called cosmic background radiation, and quite likely a correspondingly large number of neutrinos called the cosmic neutrino background. The current temperature of the photon radiation is about 3 K (−270.15 °C; −454.27 °F).

Effect on human bodies
Contrary to popular belief, a person suddenly exposed to the vacuum would not explode, freeze to death or die from boiling blood, but would take a short while to die by asphyxiation (suffocation). Air would immediately leave the lungs due to the enormous pressure gradient. Any oxygen dissolved in the blood would empty into the lungs to try to equalize the partial pressure gradient. Once the deoxygenated blood arrives at the brain, death would quickly follow.

Humans and animals exposed to vacuum will lose consciousness after a few seconds and die of hypoxia within minutes. Blood and other body fluids do boil when their pressure drops below 6.3 kPa, the vapor pressure of water at body temperature. This condition is called ebullism. The steam may bloat the body to twice its normal size and slow circulation, but tissues are elastic and porous enough to prevent rupture. Ebullism is slowed by the pressure containment of blood vessels, so some blood remains liquid. Swelling and ebullism can be reduced by containment in a flight suit. Shuttle astronauts wear a fitted elastic garment called the Crew Altitude Protection Suit (CAPS) which prevents ebullism at pressures as low as 2 kPa. Water vapor would also rapidly evaporate off from exposed areas such as the lungs, cornea of the eye and mouth, cooling the body. Rapid evaporative cooling of the skin will create frost, particularly in the mouth, but this is not a significant hazard. Space may be cold, but it's mostly vacuum and transfers heat ineffectually; as a result the main temperature regulation concern for space suits is how to get rid of naturally generated body heat.

Cold or oxygen-rich atmospheres can sustain life at pressures much lower than atmospheric, as long as the density of oxygen is similar to that of standard sea-level atmosphere. The colder air temperatures found at altitudes of up to 3 kilometres (1.9 mi) generally compensate for the lower pressures there. Above this altitude, oxygen enrichment is necessary to prevent altitude sickness, and spacesuits are necessary to prevent ebullism above 19 kilometres (12 mi). Most spacesuits use only 20 kPa of pure oxygen, just enough to sustain full consciousness. This pressure is high enough to prevent ebullism, but simple evaporation of blood can still cause decompression sickness and gas embolisms if not managed.

Rapid decompression can be much more dangerous than vacuum exposure itself. Even if the victim does not hold his breath, venting through the windpipe may be too slow to prevent the fatal rupture of the delicate alveoli of the lungs. Eardrums and sinuses may be ruptured by rapid decompression, soft tissues may bruise and seep blood, and the stress of shock will accelerate oxygen consumption leading to hypoxia. Injuries caused by rapid decompression are called barotrauma. A pressure drop as small as 13 kPa, which produces no symptoms if it is gradual, may be fatal if it occurs suddenly.
Go to part 2 please enter

No comments:

Post a Comment

Followers